投稿

意味を考える1 -- 「皇帝の新しい心」

ペンローズの「皇帝の新しい心」(1989年)の冒頭には、お母さんがコンピュータ科学者、お父さんがコンピュータを破壊しようという、今でいう「テロリスト」を両親に持つ子供が登場する。これって「銀河鉄道999」のメーテルの家庭環境と同じだ。 舞台は、国をあげて開発した、その国の全ての人間のニューロンの数より多い10の17乗個の論理ユニットを持ち、その知能は想像もつかないほど高いと言われている、巨大コンピュータUltronicの火入れとお披露目の場。 その子は、お母さんが有力な開発者だったので、セレモニーの前から三列目にいる。(お父さんは、爆発物が見つかって拘束されている)。司会者が、「誰か、Ultronicに、最初の質問をしてみませんか?」と会場に声をかける。みな、自分の無知を晒されるのがいやと思ったのか、誰も手を上げない。 その子は、Ultronicの開発と一緒に育ったようなものだったので、「彼」が何を感じているのか自分のことのようにわかるように思っているので、臆せず手を挙げる。司会者が彼を指名する。 その時、何かが起きる。 約400ページほど省略すると、あれ、これってネタバレ? でもネタバレしないと話が進まないな。まあ、いい。会場で起きたことについては、次のポストで書く。 それは、コンピュータによる「意味」の理解に関連した、とても面白い寓話だ。 (ちなみに、ペンローズの次の本「心の影」の冒頭にも寓話が掲げられているのだが、それは、プラトンの「洞窟の喩え」を寓話にしたものだ。彼は、数理哲学的には、プラトン流の「実在論者」なのだ。) ペンローズのこの本は、30年前のものだけど、人工知能論としては、頭三つぐらい飛び抜けている。サールらの「強いAI」「弱いAI」論の批判などは、痛快なものだ。 僕は、人工知能論では、「計算主義」の立場に立つのだが、この本は、全力で「計算主義」を批判している。ペンローズの「計算主義」批判は、避けて通れない問題だ。 ある意味皮肉な話だが、個人的には、この本が出た頃、哲学では飯が食えなくて、僕は哲学からITの世界に転進する。この本が扱っている問題は、当時の僕の哲学的関心には、とても身近な話題だったのだが、ITの問題としては僕は真面目に考えてはいなかったと思う。それは、僕の視野の狭さのせいだと思う。 ITの世

万延元年のアメリカ情報

イメージ
スコット・アレクサンダーという作家がいる(SF作家かもしれない。"Science Fiction"じゃなくて"Speculative Fiction"だと、誰かが言ってた)。彼のblog("Slate Star Codex")、時々見ているのだけど、そこで見つけた画像。https://goo.gl/vZRpiy 2020年11月21日が、メイフラワー号アメリカ到着の400周年に当たるらしく、アメリカでは、自国の歴史への関心が高まっているのかもしれない。 この絵は、江戸時代の1861年に日本で出版された「童繪解萬國伽」("Osanaetoki Bankokubanashi"と読むらしい)からのもの。コロンブスのアメリカ大陸「発見」から、イギリスからの独立戦争までのアメリカの歴史を、日本の読者に伝えている。 160年前の日本人の知識欲は驚くほど旺盛である。もっとも、黒船騒ぎでアメリカへの関心は高かったのだろうが。でも、江戸時代にこんな形で、アメリカについての情報が広まっていたのは知らなかった。これ、子供向けの本ということになっている。 1860年は、万延元年だ。幕府はアメリカに大型の遣米使節を派遣して同年11月日本に帰ってくる。僕は、勝海舟や福沢諭吉やジョン万次郎もこの使節団の一員だと思っていたのだが、違うようだ。彼らは、この使節団を護衛する咸臨丸に乗っていた。(「万延元年遣米使節団員名簿」https://goo.gl/ArGZ53 ) 多分、そこでの知見が、この本に生かされているのだと思う。 確かに、いろいろおかしいところはある。弓を引いて戦っているのは、ワシントンだという。「國父 話聖東」は「建国の父 ワシントン」だ。(絵師は、アメリカ見ていないのだから。インスタもなかったし。) ジョン・アダムスの母は、大蛇に飲み込まれ、アダムスはその敵討ちをするらしい。おいおい。ほとんどフェークだ。 「独立」とか「民主主義」がどう紹介されていたのか、興味があったのだが、ワシントンが虎と素手で戦い、アダムスが巨大なワシを召喚して大蛇と戦うんだから、多分、そんな話は出てこないだろう。 でも、160年前の日本人、一生懸命、こうした情報集めてたんだな。エライと思う。この本

画像を探す

イメージ
Adam Brownの学会でのプレゼン "Complexity and Geometry" を探していたのだが、表紙に格好いい絵が使われていた。https://goo.gl/Zuyg7Z よく見ると、持っているものに(元々は、ハープだったらしい)量子回路の図が書いてあって、「あっ。すごいな。この絵も彼が書いたのかな。」と感心した。 ところが、この学会 Strings 2017 自体のアイコンに、この絵が使われていることに気づく。もちろん、量子回路は書かれていない。画像は、http://www.strings2017.org/ でみれる。「あれ? おかしいな?」と思って、画像検索をする。 そうしたら、見つかったのがこの写真。これは、1965年に、ガザで見つかった7世紀初頭のビザンチン時代のモザイクらしい。ダビデ王がハープを弾いているところだという。wikiにも、このモザイクが紹介されている。"Gaza Sinagogue" https://goo.gl/56LYzn この学会、イスラエルのテルアビブで開かれた超弦理論の国際カンファレンスなので、この地の文化遺産からハープを選んだのは、まあ、わからなくもない。 ただ、二つの絵、よく似てはいるが、いろいろ細部は異なっている。だいたい、僕には、Adam Brownの表紙は女性に見える。ダビデ王は、ヒゲを蓄えているように見える。 問題は、学会のアイコンが発掘されたダビデのモザイクより、回路図を除けばBrownの表紙の方に似ているように見えること。 この三枚の絵は、どういう関係なんだろう? ---------- 酒井さんの指摘もあって、こう考えることにしました。 ・この絵は、3枚とも、ダビデのもので、少女ナウシカではないですね。元の絵は、発見された古いやつです。 ・元のモザイクは断片で古いものだから、修復されて綺麗になった画像(あるいはモザイクそのものかもしれません)が、使えるようになっていたと思います。美少年だったダビデは、少女のようにも見えます。ヒゲはありません。 ・大会の主催者は、この修復バージョンを使いました。もちろん、この絵がダビデのものであることを知っています。 ・ブラウンは、大会のアイコンを見て

科学と哲学

12月14日開催の連続ナイトセミナー「人工知能を科学する」の今回のテーマは、「人工知能と哲学」です。https://lab-kadokawa72.peatix.com/ 「人工知能を科学するのに、哲学必要ですか?」と思われた人も少なくないと思います。たしかに。 科学や数学は、確立された体系(少なくとも「これまでに確立された」という意味ですが)を持っています。その成果は、多くの人に等しく共有されています。今では誰もが、「地球が太陽のまわりを回っている」「リンゴが木から落ちるのは重力があるから」と考えています。もちろん「1+1=2」で「直角三角形ではピタゴラスの定理が成り立つ」ことも。そういう知識のあり方を「累積的知」と呼ぶことがあります。 哲学には、残念ながら、確立された体系も万人が認める真理も存在しないように見えます。人によって物事の捉え方が異なるのですから、哲学にも色々な立場があります。「残念ながら」と書きましたが、それはそれでいいことだし、これからも哲学が「完成」するようには思えません。 そうした意味では、科学と哲学は、かなり違っています。 ただ、科学と哲学は、想像以上に広い接点を持っています。それは、おそらく、技術がビジネスや経済合理性と強い結びつきを持っているのと同じだと思います。「科学と哲学」と「技術とビジネス」の二つの結びつきをくらべれば、その結びつきのの質はずいぶん違うし、「科学と哲学」のつながりはあまり意識されることは少ないのですが。 科学も数学も「発展」して、その体系を「更新」します。現在の科学が全ての問題に解答を用意しているわけではないのです。現在の科学では説明できない「謎」の存在こそ、科学を発展させる原動力です。「謎」に立ち向かうには、様々な「立場」、ある場合には矛盾する「仮説」が必要になります。そのような局面では、科学者も哲学していると考えていいのだと、僕は考えています。 今回のセミナーでは、三つの話をしようと思います。 一つ目は、「コンピュータは人間を超える」という「シンギュラリティ論」や、「そんなことはない。人間の脳の働きはコンピュータのアルゴリズムを超えている」というペンローズらの「量子脳」理論を、「計算主義」の立場から批判してみようと思います。 二つ目は、言語の意味の理解を例に、文法の理論と双対の意

複雑性と重力 3

ブラウンとサスキンドの論文「複雑性理論の第二法則」を紹介しているのだが、それは、もちろん、ITの世界でも関心が高まりつつある「量子コンピュータ」に関連しているのだが、どこかずっと遠くをみていることが面白い。 「ブラックホールは、宇宙で一番高速なコンピュータである。ただ、このコンピュータは、何の役にも立っていない。」 もちろん、ブラックホールの内部にあるのは量子コンピュータだ。何の役にも立っていないというけど、それは、自身の量子状態を、カオスなスクランブルの時期を経て更新する。でもそれは、「計算過程」であると同時に、自然の「物理過程」そのものだ。ニュートンの木から落ちるリンゴだって、自分の運動を「計算」しているのかもしれない。 この論文が面白いのは、次のような問題提起をしていることだ。 ブラックホールの量子コンピュータは、その複雑性がマックスに達すると、お腹がいっぱいになって、もはや計算することができなくなる(かれらは、それをブラックホールの周りにはファイアーウォールができていて、なにものも侵入できないという「AMPSパラドックス」と結びつけて論じている。)それは、エントロピーが最大の状態になると、熱機関に「仕事」をさせることができなくなるのと同じだ。 ところが、そこに、qubitが一個落ち込むと、光速の衝撃波とともにスクランブルが始まるのだが、それでブラックホールの複雑性Cが大きく変わるわけではない。ただ、その複雑性の取りうる可能な最大値がCmaxが大きく変わるという。 K個のqubitからなるシステムの複雑性の最大値は2のK乗だ。一個のqubitが増えると、それは2の(K+1)乗になる。複雑性の最大値は、ちょうど二倍になる。 彼らは、システムが取りうる可能な複雑性の最大値と、そのシステムの現在の複雑性の差を、uncomplexity (先に「非複雑性」と訳した)と呼ぶ。熱力学でいう「ネガ・エントロピー」と同じようなものだ。uncomplexityがあると、我々は、そのシステムに「仕事」をさせることができる! もちろん、その仕事は「計算する仕事」である! uncomplexityは、量子コンピュータの「計算資源」なのである。 「伝統的な熱力学の理論は、断熱圧縮・熱機関・冷却機械・マックスウェルの悪魔等々の一連の思考実験を通じて発展して

複雑性と重力 2

量子論と相対論の統一の思考実験の舞台は、ブラックホールだ。 ブラックホールは、奇妙な性質を持っていて、質量と電荷と角運動量という三つの物理量しか持たない。外から見る限り、全てのブラックホールは、この三つの量でしか区別できないのだ。ウィーラーは、これを、「ブラックホールには毛がない」と言った。(毛は、三本はあるのだが。オバQと一緒だ。) ブラックホールは、周囲のものすべてを飲み込むのだが、飲み込まれたものの持っていた情報は、全て失われたように見える。ホーキングは、ブラックホールのシンギュラリティ(特異点)で情報は失われるとした。それに反対したのが、トフートとサスキンドだ。 この論争は、半ば冗談めかして語られるのだが(論争で負けを認めたホーキングは、プレスキルに、「野球百科」を送ったらしい)、僕は深刻なものだったと考えている。それは、サスキンドの"Black Hole War"を読めばわかる。かれは正直に、ホーキングという「カリスマ」に対する激しい反発の感情を語っている。 この論争から、「ホログラフィック原理」が生まれ「境界」の重要性が認識され、それは、マルデセナによろAdS/CFT対応の発見に繋がっていく。 ブラックホールには、毛がないとして、それでは、その内部では何が起きているのだろうか? サスキンドの理論の基本的なイメージを述べる。 ブラックホールの内部の状態は、ある量子状態 |Q>をとっている。それがK個のqubitの状態として記述されるのなら、その複雑性の最大値はC_{max}は(maxはCの添え字)、2^K(2のK乗)で与えられる。 量子状態 |Q> (複雑性をCとしよう)を持つブラックホールに、(|0>+|1>)/√2で表されるqubitが一個吸い込まれたとしよう。その時、ブラックホールの量子状態は、|Q>から、|Q'> = (|0>⨂|Q> + |1>⨂|Q>)/√2 に変わる。qubit一個が取り込まれただけで、ブラックホールの量子状態は、全面的に組み変わることになる。 式は簡単だが、状態ベクトル|Q>が巨大な時には、この|Q>から|Q'>への状態変化には膨大な計算が必要になる。qubit一個でも、外部から何

複雑性と重力

イメージ
先に、量子情報理論での「量子テレポーテーション」を、エンタングル状態にある二つのミクロなブラックホールが形成する「ワームホール」をqubitが通り抜ける過程として解釈しようとする理論を紹介した。 今回は、現在進行中の量子論と相対論の統一を目指す動きの中で中心的な役割を果たしているのは、「複雑性」というコンセプトであることを紹介したい。 まず、ここでの「複雑性」の定義から。 サスキンドは、状態|A>と状態|B>との間の相対的な複雑性 C(A, B)を次のように定義する。   C(A, B)= 状態|A>から状態|B>を得る為に必要な最小の量子ゲートの数 すなわち、C(A, B)は、|B> = gggg....|A> となるような最小の量子ゲートgの数である。 この時、C(A, B) =  C(B, A), C(A, B) = 0 iff A=B と、C(A, B) ≦ C(A, D ) + C(D, B ) (三角不等式)が成り立つ。こうして、相対的な複雑性 C(A, C)は、正規化された状態空間の計量(距離)になる。さらに、ある状態の絶対的な複雑性 C(A)を、単純な状態、すなわちエンタングルしていない状態への最小の距離として定義する。 こうして、量子の状態の空間に、この複雑性を計量とした複雑性の幾何学を構成できる。この幾何学上に、一般相対論の基本的命題との対応物を構築していく。「測地線」とか「最小作用の法則」が働く「作用」の量子複雑性幾何学バージョンが存在するのだ。 この対応づけが、驚くような対応関係を明らかにしつつ、面白いように進むのだ。 例えば、この量子複雑性は古典的なエントロピーに対応する。ただし、N個のqubitからなるシステムの複雑性の最大値は、2のN乗になるのだが、古典的な統計力学では、N個の状態からなるエントロピーの最大値はNである。 このことは、N個のqubitからなるシステムの量子複雑性が、2のN乗個の自由度を持ったシステムの古典的エントロピーのように振舞うことを示している。 それらの対応関係は、次の論文「量子複雑性の第二法則」に展開されている。先の紹介は、この論文の第一章を要約したものだ。もちろん、この論文のタイトルは、「熱力学の第二法則」との対応を強調したもの