AI+RPAの大規模事例紹介(2) -- テレコム業界
AI+RPAの大規模事例紹介(2) -- テレコム業界
今回は、Orange Silicon Valley社 ( https://www.orangesv.com/ )のSkymind社との共同の取り組みを紹介します。https://skymind.ai/case-studies/orange ここで問題となっているのは、SIM Box Fraud というSIMの不正利用です。アメリカでは年間数十億ドルの被害が出ているといいます。
不正なSIMボックスは、国際電話をハイジャックし、それらをインターネットを介して携帯電話装置に転送し、携帯電話装置はその後それらを携帯電話ネットワークに返します。その結果、通話はローカルであるように見え、セルラー事業者は、長距離通話のルーティングおよび着信に対する支払いを受けないことになります。それだけではなく、SIM Boxは、基地局に過重な負担をかけ、他のユーザーの通話の質を低下させます。
Skymind社とOrange Silicon Valley社のプロジェクトでは、ニューラル・ネットワークのAutoencoder を用いて、不正利用のパターンを学習し異常な活動を見つけ出し、発信記録を不正の確率でランクづけます。
現在のところニューラルネットが利用されているのは、今の所ここまでで、高い確率で不正だとランクづけられたデータは、優先的に、これまでの経験で作られた「決定木(decision tree)」に基づいたルールエンジンに渡され、不正かそうでないかの細かいチェックを受けることになります。
りょうしゃ
今回は、Orange Silicon Valley社 ( https://www.orangesv.com/ )のSkymind社との共同の取り組みを紹介します。https://skymind.ai/case-studies/orange ここで問題となっているのは、SIM Box Fraud というSIMの不正利用です。アメリカでは年間数十億ドルの被害が出ているといいます。
不正なSIMボックスは、国際電話をハイジャックし、それらをインターネットを介して携帯電話装置に転送し、携帯電話装置はその後それらを携帯電話ネットワークに返します。その結果、通話はローカルであるように見え、セルラー事業者は、長距離通話のルーティングおよび着信に対する支払いを受けないことになります。それだけではなく、SIM Boxは、基地局に過重な負担をかけ、他のユーザーの通話の質を低下させます。
Skymind社とOrange Silicon Valley社のプロジェクトでは、ニューラル・ネットワークのAutoencoder を用いて、不正利用のパターンを学習し異常な活動を見つけ出し、発信記録を不正の確率でランクづけます。
現在のところニューラルネットが利用されているのは、今の所ここまでで、高い確率で不正だとランクづけられたデータは、優先的に、これまでの経験で作られた「決定木(decision tree)」に基づいたルールエンジンに渡され、不正かそうでないかの細かいチェックを受けることになります。
りょうしゃ
コメント
コメントを投稿